

 Navigation

 	
 index

 	
 next |

 	Test RTD 1.0.0 documentation

Welcome to Test RTD’s documentation!

BEdita frontend app can be easily enabled to serve REST API. Once
enabled the API present a set of default endpoints that can be
customized for frontend needs.

REST API

	Setup a frontend to consume API
	Enable API on new frontend app

	Enable API on old frontend app

	Configuration

	Response and Errors
	Response

	Errors

	Auhtentication
	Customize authentication

	Pagination
	Define your API pagination default options

	Paginate objects in custom endpoints

	Customize endpoints
	Custom endpoints

	Blacklist endpoints

	Enable special object types endpoints

	Customize /objects endpoint with your own URL path filter types

	Formatting BEdita objects
	Introducing the ApiFormatter Component

	Help ApiFormatter to cast object fields in the right way

	Remove unwanted fields

	Keep fields that are removed by default

	API reference
	Authentication

	Objects

	Poster

	User profile

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

Setup a frontend to consume API

To use REST API in your frontend app you need at least BEdita 3.6.0
version. You can already also test it using 3-corylus branch.

Note

Because of authentication is handled using Json Web Token [http://jwt.io] (IETF [https://tools.ietf.org/html/rfc7519])
and the JWT is digital signed using 'Security.salt' you should always remember to change
it in app/config/core.php file:

Configure::write('Security.salt', 'my-security-random-string');

Enable API on new frontend app

	from shell

cd /path/to/bedita
./cake.sh frontend init

	in app/config/frontend.ini.php define $config['api']['baseUrl'] with your API base url, for example

$config['api'] = array('baseUrl' => '/api/v1');

That’s all! You are ready to consume the API!

Point the browser to your API base url and you should see the list of
endpoints available, for example

{
 "auth": "http://example.com/api/v1/auth",
 "me": "http://example.com/api/v1/me",
 "objects": "http://example.com/api/v1/objects",
 "poster": "http://example.com/api/v1/poster"
}

Enable API on old frontend app

	create a new ApiController in your frontend

require(BEDITA_CORE_PATH . DS . 'controllers' . DS . 'api_base_controller.php');

class ApiController extends ApiBaseController {
 //...
}

	in app/config/frontend.ini.php define $config['api']['baseUrl'] with your API base url.

	edit app/config/routes.php putting

$apiBaseUrl = Configure::read('api.baseUrl');
if (!empty($apiBaseUrl) && is_string($apiBaseUrl)) {
 Router::connect($apiBaseUrl . '/*', array('controller' => 'api', 'action' => 'route'));
}

above

Router::connect('/*', array('controller' => 'pages', 'action' => 'route'));

That’s all!

After #570 [https://github.com/bedita/bedita/issues/570] we have
implemented a new (and better) way to handle Exceptions. Remember to
update your frontend index.php file:

if (isset($_GET['url']) && $_GET['url'] === 'favicon.ico') {
 return;
} else {
 $Dispatcher = new Dispatcher();
 $Dispatcher->dispatch();
}

Also make sure you have defined views/errors/error.tpl in your
frontend for generic error handling.

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

Configuration

To configure REST API you need to edit the frontend configuration file
app/config/frontend.ini.php, for example

$config['api'] = array(
 'baseUrl' => '/api/v1',
 'allowedOrigins' => array(),
 'auth' => array(
 'component' => 'MyCustomAuth',
 'JWT' => array(
 'expiresIn' => 600,
 'alg' => 'HS256'
),
),
 'formatting' => array(
 'fields' => array(
 // fields that should be removed from results
 'remove' => array(
 'title',
 'Category' => array('name')
),
 // fields (removed by default) that should be kept
 'keep' => array(
 'ip_created',
 'Category' => array('object_type_id', 'priority')
)
)
),
 'validation' => array(
 'writableObjects' => array('document', 'event')
)
);

Possible configuration params are:

	baseUrl the base url of REST API. Every request done to
baseUrl will be handled as an API REST request via routing rules

	allowedOrigins define which origins are allowed. Leave empty to
allow all origins

	auth contains authentication configurations:

	component define the name of auth component to use. By default
ApiAuth Component is used

	JWT define some options used in Json Web Token [http://jwt.io] authentication
as the “expires in” time (in seconds) and the hashing algorithm to use

	formatting permits to setup some fomatting rules as object fields to
remove or to keep

	validation setup some validation rules used generally in write
operations. For example writableObjects define what object types
are writable.

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

Response and Errors

Response

Usually the response of API query has the structure

{
 "api": "objects",
 "data": {},
 "method": "get",
 "params": [],
 "url": "https://example.com/api/v1/objects/1"
}

where:

	api is the endpoint called

	data is an object containing all data requested

	method is the HTTP verb used in the request

	params contains all query url params used in the request

	url is the complete url requested (full base url + basepath +
endpoint + other)

To set data for response is available the method
ApiBaseController::setData() that accepts an array as first
argument. A second argument permits to replace (default) or merge
present data with that passed.

Other meta data can be placed inside response object, for example
paging useful to paginate results:

{
 "api": "objects",
 "data": {},
 "method": "get",
 "paging": {
 "page": 1,
 "page_size": 10,
 "page_count": 10,
 "total": 995,
 "total_pages": 100
 },
 "params": [],
 "url": "https://example.com/api/v1/objects/1/children"
}

where:

	page is the current page

	page_size is the page dimension

	page_count is the number of items inside current page

	total if the count of all items

	total_pages is the total pages available

Note

If you need to serve empty response body to client you can use
ApiBaseController::emptyResponse() that by default send a 204 No
Content HTTP status code. Pass another status code as first argument to send
different status code.

Errors

Every time the API thrown an error the response will be similar to

{
 "error": {
 "status": 405,
 "code": null,
 "message": "Method Not Allowed",
 "details": "Method Not Allowed",
 "more_info": null,
 "url": "https://example.com/api/v1/foobar"
 }
}

where:

	status is the HTTP status code

	code is the API error code (not implemented)

	message is the error message

	details is the error detail

	more_info is the url to error documentation (not implemented)

	url is the url that has responded with the error

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

Auhtentication

By default all GET requests don’t require client and user
authenticatication unless the object requested has permission on it. In
that case the user has to be authenticated before require the resource.
Other operations as writing/deleting objects (POST, PUT, DELETE on
/objects endpoint) are always protected instead and they always
require authentication.

The API follow a token based authentication flow using a Json Web
Token [http://jwt.io] as access_token and an opaque token as
refresh_token useful to renew the access_token without ask again
the user credentials. See here to more details on
how to obtain access_token and refresh_token.

+--------+ +---------------+
	--(A)- Authorization Request ------->	Resource
		Owner
	<-(B)-- Authorization Grant ---------	
	+---------------+	
	+---------------+	
	--(C)-- Authorization Grant -------->	Authorization
Client		Server
	<-(D)----- Access Token (JWT) -------	
	and	
	Refresh Token	
	+---------------+	
	+---------------+	
	--(E)----- Access Token (JWT) ------>	Resource
		Server
	<-(F)--- Protected Resource ---------	
+--------+ +---------------+

The access_token must be used in every request that require
permission. To use the access_token it has to be sent in HTTP
headers as bearer token Authorization: Bearer eyJ0eXAi......

Note

Because of JWT is digital signed using 'Security.salt' you should
always remember to change it in app/config/core.php file:

Configure::write('Security.salt', 'my-security-random-string');

It is possible to invalidate all access_token released simply
changing that value.

All the logic to handle authentication is in ApiAuth component and
ApiBaseController use it for you so authentication works out of the
box. If you need to protect custom endpoints
you have to add to custom method

protected function customEndPoint() {
 if (!$this->ApiAuth->identify()) {
 throw new BeditaUnauthorizedException();
 }
}

Customize authentication

If you need to customize or change the authentication you can define
your own auth component. To maintain the component method signature used
in ApiBaseController your component should implements the interface
ApiAuthInterface.

Remember that REST API are thought to implement token based
authentication with the use of both access_token and
refresh_token so the interface define methods to handle these
tokens. If you need something different probably you would also override
authenication methods of ApiBaseController.

In case you only need some little change it should be better to directly
extend ApiAuth component that already implements the interface, and
override the methods you need.

For example supposing you want to add additional check to user
credentials, you can simply override ApiAuth::authenticate() method
which deals with it:

App::import('Component', 'ApiAuth');

class CustomAuthComponent extends ApiAuthComponent {

 public function authenticate($username, $password, array $authGroupName = array()) {
 // authentication logic here
 }

}

and finally to activate the component all you have to do is define in
configuration file config/frontend.ini.php the auth component you
want to use.

$config['api'] = array(
 'baseUrl' => '/api',
 'auth' => array(
 'component' => 'CustomAuth'
)
);

In ApiController you will have access to CustomAuth instance by
$this->ApiAuth attribute.

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

Pagination

Requesting a list of objects by /objects endpoint the result will be
paginated using default values that you can customize in ApiController.

In the response you’ll see tha pagination data in paging key

{
 "api": "objects",
 "data": {},
 "method": "get",
 "paging": {
 "page": 1,
 "page_size": 10,
 "page_count": 10,
 "total": 995,
 "total_pages": 100
 },
 "params": [],
 "url": "https://example.com/api/v1/objects/1/children"
}

where

	page is the current page

	page_size is the items per page

	page_count is the count of items in current page

	total is the total items

	total_pages is the total numbers of pages

To request a specific page simply call the endpoint passing page as
GET parameter for example /api/objects/1/children?page=5 to request
the page 5.

You can also change the page size always through GET parameter, for
example /api/objects/1/children?page_size=50 to request 50 objects
per page. page_size can’t be greater of $paginationOptions['maxPageSize'] defined in controller.

See below to know how to change the default values.

Define your API pagination default options

The default values used paginating items are defined in
ApiBaseController::paginationOptions property.

protected $paginationOptions = array(
 'page' => 1,
 'pageSize' => 20,
 'maxPageSize' => 100
);

where pageSize is the default items per page and maxPageSize is
the max page dimension that client can request. Requests with
page_size greater of maxPageSize returns a 400 HTTP error.

If you want modify those defaults you can simply override that property
in ApiController.

Paginate objects in custom endpoints

When a request has page or page_size as GET parameters those are
validated and $paginationOptions is updated to contain the requested
page options. A dim key equal to pageSize is added to be ready
to use in some methods as FrontendController::loadSectionObjects().

In this way in a ‘custom’ API endpoint you can simply do

protected function custom($id) {
 $result = $this->loadSectionObjects($id, $this->paginationOptions);
 // format and set pagination
 $this->setPaging($this->ApiFormatter->formatPaging($result['toolbar']));

 // do other stuff
}

and you are sure that pagination will work properly without doing
anything else.

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

Customize endpoints

Custom endpoints

Once you have enabled a frontend to consume API
you have a set of default available endpoints
visible pointing the browser to your API base url.

Sometimes you would want to define other endpoints to serve your custom
data to clients. You can do it simply override the $endpoints
attribute of ApiBaseController.

Write in your ApiController

protected $endPoints = array('friends');

and define the related custom method that will handle the data to show

protected function friends() {
 $friendsList = array('Tom', 'Jerry');
 $this->setData($friendsList);
}

The setData() method takes care of put $friendsList array inside
response data key. Point the browser to your API base url you should
see ‘friends’ in the endpoints list and if you request
GET /api/base/url/friends you should see

{
 "api": "friends",
 "data": [
 "Tom",
 "Jerry"
],
 "method": "get",
 "params": [],
 "url": "https://example.com/api/v1/friends"
}

In this way all request types (GET, POST, PUT, DELETE) have to be
handled by friends() method. Another possibility is to create one
method for every request type allowed from the endpoint. It can be done
creating methods named “request type + endpoint camelized”.

protected function getFriends() {
}

protected function postFriends() {
}

protected function putFriends() {
}

protected function deleteFriends() {
}

Blacklist endpoints

In some situations you will not want to expose some or all default
endpoints, so in order to disable them it is possible to define a
blacklist. After that calling those endpoints the response will be a
405 Method Not Allowed HTTP error status code.

For example to blacklist “auth” and “objects” endpoints, in your
ApiController override $blacklistEndPoints writing

protected $blacklistEndPoints = array('auth', 'objects');

Now, pointing to API base url you shouldn’t see “auth” and “objects” endpoints anymore.

Pointing to them directly and you will receive a 405 HTTP error.

Enable special object types endpoints

If you need you can also enable some special endpoint disabled by
default. Those endpoints refer to BEdita object types mapping them to
their pluralize form. So if you want to enable /documents end
/galleries endpoints you have to edit ApiController

protected $whitelistObjectTypes = array('document', 'gallery');

These special endpoints automatically filter response objects through
the object type related.

Again go to API base url to see ‘documents’ and ‘galleries’ added to
endpoints list.

Note

Note that those special endpoints work only for GET requests.

Customize /objects endpoint with your own URL path filter types

objects endpoint can be customized with URL path filters building
endpoint structured as /objects/:id/url_path_filter. URL path
filters on by default are visible in ApiBaseController::$allowedObjectsUrlPath property

protected $allowedObjectsUrlPath = array(
 'get' => array(
 'relations',
 'children',
 'contents',
 'sections',
 'descendants',
 'siblings',
 //'ancestors',
 //'parents'
),
 'post' => array(
 'relations',
 'children'
),
 'put' => array(
 'relations',
 'children'
),
 'delete' => array(
 'relations',
 'children'
)
);

URL path filters can be inhibited or new ones can be added overriding
that property in ApiController.

In practice URL path filters are divided by request type (GET, POST,
...) so it is possible doing request like GET /objects/1/children,
POST /objects/1/relations but not POST /objects/1/siblings
because of that filter is active only for GET requests.

Every URL path filter must have a corresponding controller method named
“request type + Objects + URL path filter camelized” that will handle
the request. First url part :id and every other url parts after URL
path filter will be passed to that method as arguments.

For example, supposing to want to remove all ‘delete’ and ‘post’ URL
path filters and add a new ‘foo_bar’ filter for GET request, in
ApiController we can override

protected $allowedObjectsUrlPath = array(
 'get' => array(
 'relations',
 'children',
 'contents',
 'sections',
 'descendants',
 'siblings',
 'foo_bar'
),
);

and add the method

protected function getObjectsFooBar($objectId) {
 // handle request here
}

In this way the new URL path filter is active and reachable from
GET /objects/:id/foo_bar. Every other request type (POST, PUT,
DELETE) to that will receive 405 Method Not Allowed.

If our ‘foo_bar’ URL path filter have to support
GET /objects/:id/foo_bar/:foo_val requests then
ApiController::getObjectsFooBar() will receive :foo_val as
second argument. A best practice should be to add to method a validation
on the number of arguments supported to avoid to respond to request as
GET /objects/:id/foo_bar/:foo_val/bla/bla/bla.

protected function getObjectsFooBar($objectId, $fooVal = null) {
 if (func_num_args() > 2) {
 throw new BeditaBadRequestException();
 }
 // handle request here
}

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

Formatting BEdita objects

Introducing the ApiFormatter Component

To respond with consistent data the BEdita object types are transformed
and formatted using the ApiFormatter Component that deals with
cleaning objects from useless data and casting and trasforming some
fields in correct format.

If you have a look at /objects/:id response you’ll see that fields
as ‘id’ are integer other like ‘latitude’ and ‘longitude’ of geo tag
are float and dates are formatted in ISO-8601. ApiFormatter
Component with a little help from Models takes care of it.

When you load an object or list of objects you should always use the
ApiFromatter Component to have data always formatted in the same
way.

// load an object
$object = $this->loadObj($id);
$result = $this->ApiFormatter->formatObject($object);
// in $result['object'] you have the formatted object

// list of objects
$objects = $this->loadSectionObjects($id, array('itemsTogether' => true));
$result = $this->ApiFormatter->formatObjects($objects['children']);
// in $result['objects'] you have the formatted objects

ApiFormatter::formatObject() and ApiFormatter::formatObjects()
accept as second argument an array of options with which it is possible
add to the formatted object the count of relations and children.

$result = $this->ApiFormatter->formatObject($object, array(
 'countRelations' => true,
 'countChildren' => true
));

By default no count is done.

Help ApiFormatter to cast object fields in the right way

When formatting BEdita object ApiFormatter asks help to related
object type Model to know which fields have to be cast in the right
type. Basically every object type returns an array of fields that are
defined in database as ‘integer’, ‘float’, ‘date’, ‘datetime’,
‘boolean’. This array is returned from
BEAppObjectModel::apiTransformer() method and it is something
similar to

array(
 'id' => 'integer',
 'start_date' => 'datetime',
 'end_date' => 'datetime',
 'duration' => 'integer',
 'object_type_id' => 'integer',
 'created' => 'datetime',
 'modified' => 'datetime',
 'valid' => 'boolean',
 'user_created' => 'integer',
 'user_modified' => 'integer',
 'fixed' => 'boolean',
 'GeoTag' => array(
 'id' => 'integer',
 'object_id' => 'integer',
 'latitude' => 'float',
 'longitude' => 'float',
 'gmaps_lookat' => array(
 'latitude' => 'float',
 'longitude' => 'float',
 'zoom' => 'integer',
)

)
 'Tag' => array(
 'id' => 'integer',
 'area_id' => 'integer',
 'object_type_id' => 'integer',
 'priority' => 'integer',
 'parent_id' => 'integer',
),
 'Category' => array(
 'id' => 'integer',
 'area_id' => 'integer',
 'object_type_id' => 'integer',
 'priority' => 'integer',
 'parent_id' => 'integer',
)
)

By default only tables that form the object chain plus ‘categories’,
‘tags’ and ‘geo_tags’ are automatically returned, but that method can
be overridden to customize the result. For example the Event model
add to basic transformer the DateItem transformer:

public function apiTransformer(array $options = array()) {
 $transformer = parent::apiTransformer($options);
 $transformer['DateItem'] = $this->DateItem->apiTransformer($options);
 return $transformer;
}

The ApiFormatter uses these transformers merged to common object
transformer ApiFormatterComponent::$transformers['object'] to present
consistent data to client. It is possible to use some special
transformer types that are:

	underscoreField that underscorize a camelcase field maintaining
value unchanged

	integerArray that cast to integer all array values

Remove unwanted fields

Another useful task of ApiFormatter is to clean unwanted fields from
data exposed to client. To do that it uses
ApiFormatter::$objectFieldsToRemove array that can be customized
through configuration or on the fly in controller.

Add fields to remove from configuration

In config/frontend.ini.php or config/frontend.cfg.php is
possible to customize which fields exposed by default you want to remove
from results.

$config['api'] = array(
 'baseUrl' => '/api/v1',
 ...
 'formatting' => array(
 'fields' => array(
 // fields that should be added
 // to ApiFormattingComponent::objectFieldsToRemove
 // i.e. removed from formatted object
 'remove' => array(
 'description',
 'title',
 'Category' => array('name'),
 'GeoTag' => array('title'),
 'Tag'
)
)
)
);

In this way you say to ApiFormatter that ‘description’, ‘title’,
‘name’ of ‘Category’, ‘title’ of ‘GeoTag’ and all ‘Tag’ array must be
cleaned from final results. Every time ApiFormatter::formatObject()
or ApiFormatter::formatObjects() is called the data are cleaned up
using ApiFormatter::cleanObject().

Add fields to remove on the fly

In your ApiController you can decide in every moment to change which
fields remove from results using
ApiFormatter::objectFieldsToRemove() method.

// get the current value
$currentFieldsToRemove = $this->ApiFormatter->objectFieldsToRemove();

// to ovveride all. It completely replaces current fields to remove with new one
$this->ApiFormatter->objectFieldsToRemove(
 array(
 'title',
 'description'
),
 true
);

// to add new fields to remove
$this->ApiFormatter->objectFieldsToRemove(array(
 'remove' => array('title', 'description')
));

Keep fields that are removed by default

Sometime you could want to present to client some fields that normally
are cleaned up. Likewise to what seen with fields to remove, it is
possible do it from configuration or on the fly.

Add fields to keep from configuration

In config/frontend.cfg.php

$config['api'] = array(
 'baseUrl' => '/api/v1',
 ...
 'formatting' => array(
 'fields' => array(
 // fields that should be removed
 // to ApiFormattingComponent::objectFieldsToRemove
 // i.e. kept in formatted object
 'keep' => array(
 'fixed',
 'ip_created',
 'Category' => array('object_type_id', 'priority')
)
)
)
);

In this way you say to ApiFormatter that ‘fixed’, ‘ip_created’ and
‘object_type_id’, ‘priority’ of ‘Category’ must be preserved and
presented to client.

Add fields to keep on the fly

In your ApiController

// to keep fields
$this->ApiFormatter->objectFieldsToRemove(array(
 'keep' => array('ip_created', 'fixed')
));

It is possible to mix ‘remove’ and ‘keep’ options both in configuration
and in controller.

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

API reference

WARNING: This is a draft document, endpoints and data structure could
likely change. We are still designing some parts of the response.

A frontend app enabled to consume REST API exposes a set of default
endpoints:

	Authentication
	endpoint: /auth

	Objects
	endpoint: /objects

	Create/update an object

	Add/edit relations

	Edit (replace) relation data between objects

	Add/edit children

	Edit children position

	Delete an object

	Delete a relation between objects

	Remove child from a parent

	Poster
	endpoint: /poster/:id

	User profile
	endpoint: /me

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

 	API reference

Authentication

endpoint: /auth

It used to retrieve an access_token to access protected items, renew
access_token and remove permissions. The access_token is a Json Web Token [http://jwt.io]
(IETF [https://tools.ietf.org/html/rfc7519]). More info on authentication

Note

Because of JWT is digital signed using 'Security.salt' you should
always remember to change it in app/config/core.php file:

Configure::write('Security.salt', 'my-security-random-string');

It is possible to invalidate all access_token released simply
changing that value.

Obtain an access token

Request type: POST

Parameters

{
 "username": "test",
 "password": "test",
 "grant_type": "password"
}

grant_type is optional because it is the default used if no one is
passed.

If user is validated the response will contain the JWT, the time to
expire (in seconds) and the refresh_token useful to renew the JWT

{
 "api": "auth",
 "data": {
 "access_token": "eyJ0eXAi.....",
 "expires_in": 600,
 "refresh_token": "51a3f718e7abc712e421f64ea497a323aea4e76f"
 },
 "method": "post",
 "params": [],
 "url": "https://example.com/api/auth"
}

Once you received the access token you have to use it in every request
that require authentication. It can be used in HTTP header

Authorization: Bearer eyJ0eXAi.....

or as query url /api/endpoint?access_token=eyJ0eXAi.....

Renew the access token

If the access token was expired you need to generate a new one started
by refresh token. In this case do not pass the expired access token

Request type: POST

Parameters

{
 "grant_type": "refresh_token",
 "refresh_token": "51a3f718e7abc712e421f64ea497a323aea4e76f"
}

If refresh token is valid it returns the new access token

{
 "api": "auth",
 "data": {
 "access_token": "rftJasd3.....",
 "expires_in": 600,
 "refresh_token": "51a3f718e7abc712e421f64ea497a323aea4e76f"
 },
 "method": "post",
 "params": [],
 "url": "https://example.com/api/auth"
}

Get the updated time to access token expiration

Calling /auth in GET using the access_token return the updated
‘expires_in’ time.

Request type: GET

It returns

{
 "api": "auth",
 "data": {
 "access_token": "rftJasd3.....",
 "expires_in": 48
 },
 "method": "get",
 "params": [],
 "url": "https://example.com/api/auth"
}

Revoking a refresh token /auth/:refresh_token

In order to invalidate an access_token you need to remove it from
client and revoke the refresh token

Request type: DELETE

If the refresh token is deleted it responds as HTTP 204 No Content.

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

 	API reference

Objects

endpoint: /objects

It used to get a BEdita object or a set of objects.

Get an object /objects/:name

where :name can be the object id or the object unique name
(nickname). Note that the response data fields can change depending of
BEdita object type exposed so you could see more or less fields respect
to example below.

Every object can have relations with other objects. The count of objects
related is in data.object.relations.<relation_name> where there are
count (the number of related object) and url fields. The url
is the complete API request url to get the object related, for example
https://example.com/api/objects/1/relations/attach

Request type: GET

{
 "api": "objects",
 "data": {
 "object": {
 "id": 218932,
 "start_date": "2015-01-08T00:00:00+0100",
 "end_date": null,
 "subject": null,
 "abstract": null,
 "body": "This is the body text",
 "object_type_id": 22,
 "created": "2015-01-30T10:04:49+0100",
 "modified": "2015-05-08T12:59:49+0200",
 "title": "hello world",
 "nickname": "hello-world",
 "description": "the description",
 "valid": true,
 "lang": "eng",
 "rights": "",
 "license": "",
 "creator": "",
 "publisher": "",
 "note": null,
 "comments": "off",
 "publication_date": "2015-01-08T00:00:00+0100",
 "languages": {
 "ita": {
 "title": "ciao mondo"
 }
 },
 "relations": {
 "attach": {
 "count": 8,
 "url": "https://example.com/api/objects/1/relation/attach"
 },
 "seealso": {
 "count": 2,
 "url": "https://example.com/api/objects/1/relation/seealso"
 }
 },
 "object_type": "Document",
 "authorized": true,
 "free_access": true,
 "custom_properties": {
 "bookpagenumber": "12",
 "number": "8"
 },
 "geo_tags": [
 {
 "id": 68799,
 "object_id": 218932,
 "latitude": 44.4948179,
 "longitude": 11.33969,
 "address": "via Rismondo 2, Bologna",
 "gmaps_lookats": {
 "zoom": 16,
 "mapType": "k",
 "latitude": 44.4948179,
 "longitude": 11.33969,
 "range": 44052.931589613
 }
 }
],
 "tags": [
 {
 "label": "tag one",
 "name": "tag-one"
 },
 {
 "label": "tag two",
 "name": "tag-two"
 }
],
 "categories": [
 {
 "id": 266,
 "area_id": null,
 "label": "category one",
 "name": "category-one"
 },
 {
 "id": 323,
 "area_id": null,
 "label": "category two",
 "name": "category-two"
 }
]
 }
 },
 "method": "get",
 "params": [],
 "url": "https://example.com/api/objects/218932"
}

If :name corresponds to a section or a publication then the
response will have data.object.children with the total count of
children, count of contents, count of sections and the related url.

{
 "children": {
 "count": 14,
 "url": "https://example.com/api/objects/1/children",
 "contents": {
 "count": 12,
 "url": "https://example.com/api/objects/1/contents"
 },
 "sections": {
 "count": 2,
 "url": "https://example.com/api/objects/1/sections"
 }
 }
}

Get a list of publication’s descendants /objects

Request type: GET

Return a paginated list of objects that are descendants of the frontend
publication. The response will be an array of objects as shown below.

Get a list of related objects /objects/:name/:filter_type

Return a list of objects related to :name object using :filter_type
filter.

:filter_type value can be ‘ancestors’ (not supported yet), ‘parents’
(not supported yet), ‘children’, ‘descendants’, ‘siblings’, ‘contents’,
‘sections’ and ‘relations’

The response will usually be an array of objects as:

Request type: GET

{
 "api": "objects",
 "data": {
 "objects": [
 {
 "id": 100,
 "title": "my title",
 ...
 },
 {
 "id": 42,
 "title": "other title",
 ...
 },
 ...
]
 },
 "method": "get",
 "paging": {
 "page": 1,
 "page_size": 5,
 "page_count": 5,
 "total": 50,
 "total_pages": 10
 },
 "params": [],
 "url": "https://example.com/api/objects/1/children"
}

Get a list of children /objects/:name/children

It returns the paginated children of object :name.

Get a list of children of type section /objects/:name/sections

It returns the paginated children of object :name. The children are
just sections (‘section BEdita object type)

Get a list of children of type contents /objects/:name/contents

It returns the paginated children of object :name. The children are
other than sections.

Get a list of descendants /objects/:name/descendants

It returns the paginated descendants of object :name.

Get a list of siblings /objects/:name/siblings

It returns the paginated siblings of object :name.

Get relations count /objects/:name/relations

It returns a summary of relations information about :name object. It
show every relation with the count and the url to get the related
objects detail.

{
 "api": "objects",
 "data": {
 "attach": {
 "count": 1,
 "url": "https://example.com/api/objects/1/relations/attach"
 },
 "seealso": {
 "count": 2,
 "url": "https://example.com/api/objects/1/relations/seealso"
 }
 },
 "method": "get",
 "params": [],
 "url": "https://example.com/api/objects/1/relations"
}

Get the related objects detail /objects/:name/relations/:relation_name

It returns the paginated list of objects related by :relation_name to
:name object.

Get the relation detail /objects/:name/relations/:relation_name/:related_id

Request type: GET

It returns the relation :relation_name detail from main object
:name and related object related_id

{
 "api": "objects",
 "data": {
 "priority": 3,
 "params": {
 "label": "here the label"
 }
 },
 "method": "get",
 "params": [],
 "url": "https://example.com/api/objects/1/relations/attach/2"
}

Get the child position /objects/:name/children/:child_id

Request type: GET

It returns the position (priority key) of :child_id relative to
all children of parent object :name

{
 "api": "objects",
 "data": {
 "priority": 3
 },
 "method": "get",
 "params": [],
 "url": "https://example.com/api/objects/1/children/2"
}

Create/update an object

Request type: POST

Conditions: User has to be authenticated
and has to have the permission to access to the object.

Before save objects the frontend app that serve API has to be configured
to know what objects can be written

$config['api'] = array(

 'validation' => array(
 // to save 'document' and 'event' object types
 'writableObjects' => array('document', 'event')
)
);

Saving new objects user has to be authenticated
and data from client must contain: * object_type i.e. the
object type you want to create * at least a parent (parents key)
accessible (with right permission for user authorized) on publication
tree or at least a relation (relations key) with another object
reachable (where reachable means an accessible object on tree or
related to an accessible object on tree).

Example of valid data from client:

{
 "data": {
 "title": "My title",
 "object_type": "event",
 "description": "bla bla bla",
 "parents": [1, 34, 65],
 "relations": {
 "attach": [
 {
 "related_id": 12,
 "params": {
 "label": "foobar"
 }
 },
 {
 "related_id": 23
 }
],
 "seealso": [
 {
 "related_id": 167
 }
]
 },
 "categories": ["name-category-one", "name-category-two"],
 "tags": ["name-tag_one", "name-tag-two"],
 "geo_tags": [
 {
 "title": "geo tag title",
 "address": "via",
 "latitude": 43.012,
 "longitude": 10.45
 }
],
 "date_items": [
 {
 "start_date": "2015-07-08T15:00:35+0200",
 "end_date": "2015-07-08T15:00:35+0200",
 "days": [0,3,4]
 },
 {
 "start_date": "2015-09-01T15:00:35+0200",
 "end_date": "2015-09-30T15:00:35+0200"
 }
]
 }
}

dates must be in ISO 8601 format. In case of success a 201
Created HTTP status code is returned with the detail of object created
in the response body.

You can use POST also to update an existent object. In that case the
object id has to be passed in “data” object from client and
object_type can be omitted.

Add/edit relations

Request type: POST

Conditions: User has to be authenticated
and has to have the permission to access to the object.

In order to add or edit relations you can use the endpoint /objects
as /objects/:name/relations/:relation_name where :name can be the
object id or nickname. and :relation_name the relation name.
Relations data must be an array of relation data or an object with
relation data if you need to save only one relation (note that it is the
same that send an array with only one relation).

	related_id is the related object id and is mandatory

	params fields depend from relation type (optional)

	priorityis the position of the relation. Relation with lower
priority are shown before (optional)

For example to add/edit attach relations to object with id 3 you can do
a request:

POST /objects/3/relations/attach

valid data can be:

{
 "data": [
 {
 "related_id": 15,
 "params": {
 "label": "my label"
 }
 },
 {
 "related_id": 28
 }
]
}

to create/update a bunch of relations, or

{
 "data": {
 "related_id": 34,
 "priority": 3
 }
}

to create/update only one relation.

If a “relation_name” relation between main object and related object
not exists then it is created else it is updated. If at least a relation
is created a 201 Created HTTP status code is sent and an HTTP header
Location is set with url of list of related objects.

The response body will be an array of relation data just saved.

Saving new relations you can pass the priority you want to set. If
no priority is passed it is automatically calculated starting from
the max priority in the current relation.

Edit (replace) relation data between objects

Request type: PUT

Conditions: User has to be authenticated
and has to have the permission to access to the objects.

In order to edit the relation data between two objects you can use the
endpoint /objects as
/objects/:name/relations/:relation_name/:related_id where :name
can be the object id or nickname, :relation_name the relation name
and :related_id the related object id. Relations data must be an
object with data

	params fields depend from relation type

	priority is the position of the relation. Relation with lower
priority are shown before

At least params or priority must be defined. If one of these is
not passed it will be set to null.

So to edit attach relation between object 1 and 2 the request will be

PUT /objects/1/relations/attach/2

{
 "data": {
 "priority": 3,
 "params": {
 "label": "new label"
 }
 }
}

In case of success the server will respond with a 200 HTTP status
code and the response body will be the same of Get the relation detail

Add/edit children

Request type: POST

Conditions: User has to be authenticated
and has to have the permission to access to the object.

In order to add or edit children to a area/section object type you can
use the endpoint /objects as /objects/:name/children where
:name can be the object id or nickname. Children data must be an array
of child data or an object with child data if you need to save only one
child (note that it is the same that send an array with only one child).

	child_id is the child object id and is mandatory

	priority is the position of the child on the tree

For example to add/edit children to object with id 3 you can do a
request:

POST /objects/3/children

valid data can be:

{
 "data": [
 {
 "child_id": 15,
 "priority": 3
 },
 {
 "child_id": 28
 }
]
}

to create/update a bunch of children, or

{
 "data": {
 "child_id": 34,
 "priority": 3
 }
}

to create/update only one child.

If a “child_id” is a new children for parent object then it is created
on tree else it is updated. If at least a new child is created a 201
Created HTTP status code is sent and an HTTP header Location is
set with url of list of children objects.

The response body will be an array of children data just saved.

Saving new children you can pass the priority you want to set i.e.
the position on the tree. If no priority is passed every new
children is appended to parent on tree structure.

Edit children position

Request type: PUT

Conditions: User has to be authenticated
and has to have the permission to access to the objects.

In order to edit children position you can use the endpoint /objects
as /objects/:name/children/:child_id where :name can be the object
id or nickname and :child_id is the children object id. Data passed
must contain priority field that is the position of child you want
to update.

For example to edit the position of child with id 2 of parent with id 1:

PUT /objects/1/children/2

{
 "data": {
 "priority": 5
 }
}

Delete an object

Request type: DELETE

Conditions: User has to be authenticated
and has to have the permission to access to the object.

To delete an object has to be used the endpoint /objects/:name where
:name can be the object id or nickname.

If the object is deleted successfully a 204 No Content HTTP status
code is sent. Further requests to delete the same object will return a
404 Not Found HTTP status code.

Delete a relation between objects

Request type: DELETE

Conditions: User has to be authenticated
and has to have the permission to access to the object.

In order to delete an existent relation between two objects you can use
the endpoint /objects/:name/relations/:rel_name/:related_id where
:name is the object id or nickname, :rel_name is the relation name
between objects and :related_id is the object id related to object
:name.

If the relation is succesfully deleted 204 No Content HTTP status code
is sent. Further requests to delete the same relation will return a 404
Not Found HTTP status code.

Remove child from a parent

Request type: DELETE

Conditions: User has to be authenticated
and has to have the permission to access to the object.

To remove an existent child of an object the endpoint
/objects/:name/children/:child_id can be used, where :name is the
object id or nickname of parent and :child_id is id of the child
object. Note that the child will be only removed from parent’s tree but
it continue to exist.

If :child_id is succesfully removed from :name children a 204 No
Content HTTP status code is sent. Further requests to remove the same
child will return a 404 Not Found HTTP status code.

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Test RTD 1.0.0 documentation

 	API reference

Poster

endpoint: /poster/:id

Get the image representation of object :id as thumbnail url

Request type: GET

Return the thumbnail url of an image representation of the object :id.
The thumbnail returned depends from the object type of :id and from
its relations, in particular:

	if object :id has a ‘poster’ relation with an image object then it
returns a thumbnail of that image 2.else if the object is an image
object then it returns a thumbnail of the object

	else if the object has an ‘attach’ relation with an image object then
it returns a thumbnail of that image

The response will be

{
 "api": "poster",
 "data": {
 "id": 5,
 "uri": "http://media.server/path/to/thumb/thumbnail.jpg"
 },
 "method": "get",
 "params": [],
 "url": "https://example.com/api/poster/5"
}

Query Url Parameters

	width the thumbnail width

	height the thumbnail height

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Test RTD 1.0.0 documentation

 	API reference

User profile

endpoint: /me

Obtain information about authenticated user

Request type: GET

Conditions: User has to be authenticated

Return information about current authenticated user

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Test RTD 1.0.0 documentation

Index

 Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/minus.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Test RTD 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Alberto Pagliarini.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

